Какое строение имеет атом. Строение атома: ядро, нейтрон, протон, электрон. Химические процессы и влияние доли элемента в веществах на ход реакции

Атом - это мельчайшая частица химического вещества, которая способна сохранять его свойства. Слово «атом» происходит от древнегреческого «atomos», что означает «неделимый». В зависимости о того, сколько и каких частиц находится в атоме, можно определить химический элемент .

Кратко о строении атома

Как можно вкратце перечислить основные сведения о является частицей с одним ядром, которое заряжено положительно. Вокруг этого ядра расположено отрицательно заряженное облако из электронов. Каждый атом в своем обычном состоянии является нейтральным. Размер этой частицы полностью может быть определен размером электронного облака, которое окружает ядро.

Само ядро, в свою очередь, тоже состоит из более мелких частиц - протонов и нейтронов. Протоны являются положительно заряженными. Нейтроны не несут в себе никакого заряда. Однако протоны вместе с нейтронами объединяются в одну категорию и носят название нуклонов. Если необходимы основные сведения о строении атома кратко, то эта информация может быть ограничена перечисленными данными .

Первые сведения об атоме

О том же, что материя может состоять из мелких частиц, подозревали еще древние греки. Они полагали, что все существующее и состоит из атомов. Однако такое воззрение носило чисто философский характер и не может быть трактовано научно.

Первым основные сведения о строении атома получил английский ученый Именно этот исследователь сумел обнаружить, что два химических элемента могут вступать в различные соотношения, и при этом каждая такая комбинация будет представлять собой новое вещество. Например, восемь частей элемента кислорода порождают собой углекислый газ. Четыре части кислорода - угарный газ.

В 1803 году Дальтон открыл так называемый закон кратных отношений в химии. При помощи косвенных измерений (так как ни один атом тогда не мог быть рассмотрен под тогдашними микроскопами) Дальтон сделал вывод об относительном весе атомов .

Исследования Резерфорда

Почти столетие спустя основные сведения о строении атомов были подтверждены еще одним английским химиком - Ученый предложил модель электронной оболочки мельчайших частиц.

На тот момент названная Резерфордом «Планетарная модель атома» была одним из важнейших шагов, которые могла сделать химия. Основные сведения о строении атома свидетельствовали о том, что он похож на Солнечную систему: вокруг ядра по строго определенным орбитам вращаются частицы-электроны, подобно тому, как это делают планеты.

Электронная оболочка атомов и формулы атомов химических элементов

Электронная оболочка каждого из атомов содержит ровно столько электронов, сколько находится в его ядре протонов. Именно поэтому атом является нейтральным. В 1913 году еще один ученый получил основные сведения о строении атома. Формула Нильса Бора была похожа на ту, что получил Резерфорд. Согласно его концепции, электроны также вращаются вокруг ядра, расположенного в центре. Бор доработал теорию Резерфорда, внес стройность в ее факты.

Уже тогда были составлены формулы некоторых химических веществ. Например, схематически строение атома азота обозначается как 1s 2 2s 2 2p 3 , строение атома натрия выражается формулой 1s 2 2s 2 2p 6 3s 1 . Через эти формулы можно увидеть, какое количество электронов движется по каждой из орбиталей того или иного химического вещества.

Модель Шредингера

Однако затем и эта атомная модель устарела. Основные сведения о строении атома, известные науке сегодня, во многом стали доступны благодаря исследованиям австрийского физика

Он предложил новую модель его строения - волновую. К этому времени ученые уже доказали, что электрон наделен не только природой частицы, но обладает свойствами волны.

Однако у модели Шредингера и Резерфорда имеются и общие положения. Их теории сходны в том, что электроны существуют на определенных уровнях.

Такие уровни также называются электронными слоями. При помощи номера уровня может быть охарактеризована энергия электрона. Чем выше слой, тем большей энергией он обладает. Все уровни считаются снизу вверх, таким образом, номер уровня соответствует его энергии. Каждый из слоев в электронной оболочке атома имеет свои подуровни. При этом у первого уровня может быть один подуровень, у второго - два, у третьего - три и так далее (см. приведенные выше электронные формулы азота и натрия).

Еще более мелкие частицы

На данный момент, конечно, открыты еще более мелкие частицы, нежели электрон, протон и нейтрон. Известно, что протон состоит из кварков. Существуют и еще более мелкие частицы мироздания - например, нейтрино, который по своим размерам в сто раз меньше кварка и в миллиард раз меньше протона.

Нейтрино - это настолько мелкая частица, что она в 10 септиллионов раз меньше, чем, к примеру, тираннозавр. Сам тираннозавр во столько же раз меньших размеров, чем вся обозримая Вселенная.

Основные сведения о строении атома: радиоактивность

Всегда было известно, что ни одна химическая реакция не может превратить один элемент в другой. Но в процессе радиоактивного излучения это происходит самопроизвольно.

Радиоактивностью называют способность ядер атомов превращаться в другие ядра - более устойчивые. Когда люди получили основные сведения о строении атомов, изотопы в определенной мере могли служить воплощением мечтаний средневековых алхимиков.

В процессе распада изотопов испускается радиоактивное излучение. Впервые такое явление было обнаружено Беккерелем. Главный вид радиоактивного излучения - это альфа-распад. При нем происходит выброс альфа-частицы. Также существует бета-распад, при котором из ядра атома выбрасывается, соответственно, бета-частица.

Природные и искусственные изотопы

В настоящее время известно порядка 40 природных изотопов. Их большая часть расположена в трех категориях: урана-радия, тория и актиния. Все эти изотопы можно встретить в природе - в горных породах, почве, воздухе. Но помимо них, известно также порядка тысячи искусственно выведенных изотопов, которые получают в ядерных реакторах. Многие их таких изотопов используются в медицине, особенно в диагностике .

Пропорции внутри атома

Если представить себе атом, размеры которого будут сопоставимы с размерами международного спортивного стадиона, тогда можно визуально получить следующие пропорции. Электроны атома на таком «стадионе» будут располагаться на самом верху трибун. Каждый из них будет иметь размеры меньше, чем булавочная головка. Тогда ядро будет расположено в центре этого поля, а его размер будет не больше, чем размер горошины.

Иногда люди задают вопрос, как в действительности выглядит атом. На самом деле он в буквальном смысле слова не выглядит никак - не по той причине, что в науке используются недостаточно хорошие микроскопы. Размеры атома находятся в тех областях, где понятие «видимости» просто не существует.

Атомы обладают очень малыми размерами. Но насколько малы в действительности эти размеры? Факт состоит в том, что самая маленькая, едва различимая человеческим глазом крупица соли содержит в себе порядка одного квинтиллиона атомов.

Если же представить себе атом такого размера, который мог бы уместиться в человеческую руку, то тогда рядом с ним находились бы вирусы 300-метровой длины. Бактерии имели бы длину 3 км, а толщина человеческого волоса стала бы равна 150 км. В лежачем положении он смог бы выходить за границы земной атмосферы. А если бы такие пропорции были действительны, то человеческий волос в длину смог бы достигать Луны. Вот такой он непростой и интересный атом, изучением которого ученые продолжают заниматься и по сей день.

Атом - это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из ядра, имеющего положительный электрический заряд, и отрицательно заряженных электронов. Заряд ядра любого химического элемента равен произведению Z на e, где Z - порядковый номер данного элемента в периодической системе химических элементов, е - величина элементарного электрического заряда.

Электрон - это мельчайшая частица вещества с отрицательным электрическим зарядом е=1,6·10 -19 кулона, принятым за элементарный электрический заряд. Электроны, вращаясь вокруг ядра, располагаются на электронных оболочках К, L, М и т. д. К - оболочка, ближайшая к ядру. Размер атома определяется размером его электронной оболочки. Атом может терять электроны и становиться положительным ионом или присоединять электроны и становиться отрицательным ионом. Заряд иона определяет число потерянных или присоединенных электронов. Процесс превращения нейтрального атома в заряженный ион называется ионизацией.

Атомное ядро (центральная часть атома) состоит из элементарных ядерных частиц - протонов и нейтронов. Радиус ядра примерно в сто тысяч раз меньше радиуса атома. Плотность атомного ядра чрезвычайно велика. Протоны - это стабильные элементарные частицы, имеющие единичный положительный электрический заряд и массу, в 1836 раз большую, чем масса электрона. Протон представляет собой ядро атома самого легкого элемента - водорода. Число протонов в ядре равно Z. Нейтрон - это нейтральная (не имеющая электрического заряда) элементарная частица с массой, очень близкой к массе протона. Поскольку масса ядра складывается из массы протонов и нейтронов, то число нейтронов в ядре атома равно А - Z, где А - массовое число данного изотопа (см. ). Протон и нейтрон, входящие в состав ядра, называются нуклонами. В ядре нуклоны связаны особыми ядерными силами.

В атомном ядре имеется огромный запас энергии, которая высвобождается при ядерных реакциях. Ядерные реакции возникают при взаимодействии атомных ядер с элементарными частицами или с ядрами других элементов. В результате ядерных реакций образуются новые ядра. Например, нейтрон может переходить в протон. В этом случае из ядра выбрасывается бета-частица, т. е. электрон.

Переход в ядре протона в нейтрон может осуществляться двумя путями: либо из ядра испускается частица с массой, равной массе электрона, но с положительным зарядом, называемая позитроном (позитронный распад), либо ядро захватывает один из электронов с ближайшей к нему К-оболочки (К-захват).

Иногда образовавшееся ядро обладает избытком энергии (находится в возбужденном состоянии) и, переходя в нормальное состояние, выделяет лишнюю энергию в виде электромагнитного излучения с очень малой длиной волны - . Энергия, выделяющаяся при ядерных реакциях, практически используется в различных отраслях промышленности.

Атом (греч. atomos - неделимый) наименьшая частица химического элемента, обладающая его химическими свойствами. Каждый элемент состоит из атомов определенного вида. В состав атома входят ядро, несущее положительный электрический заряд, и отрицательно заряженные электроны (см.), образующие его электронные оболочки. Величина электрического заряда ядра равна Z-e, где е - элементарный электрический заряд, равный по величине заряду электрона (4,8·10 -10 эл.-ст. ед.), и Z - атомный номер данного элемента в периодической системе химических элементов (см.). Так как неионизированный атом нейтрален, то число электронов, входящих в него, также равно Z. В состав ядра (см. Ядро атомное) входят нуклоны, элементарные частицы с массой, примерно в 1840 раз большей массы электрона (равной 9,1·10 -28 г), протоны (см.), заряженные положительно, и не имеющие заряда нейтроны (см.). Число нуклонов в ядре называется массовым числом и обозначается буквой А. Количество протонов в ядре, равное Z, определяет число входящих в атом электронов, строение электронных оболочек и химические свойства атома. Количество нейтронов в ядре равно А-Z. Изотопами называются разновидности одного и того же элемента, атомы которых отличаются друг от друга массовым числом А, но имеют одинаковые Z. Таким образом, в ядрах атомов различных изотопов одного элемента имеется разное число нейтронов при одинаковом числе протонов. При обозначении изотопов массовое число А записывается сверху от символа элемента, а атомный номер внизу; например, изотопы кислорода обозначаются:

Размеры атома определяются размерами электронных оболочек и составляют для всех Z величину порядка 10 -8 см. Поскольку масса всех электронов атома в несколько тысяч раз меньше массы ядра, масса атома пропорциональна массовому числу. Относительная масса атома данного изотопа определяется по отношению к массе атома изотопа углерода С 12 , принятой за 12 единиц, и называется изотопной массой. Она оказывается близкой к массовому числу соответствующего изотопа. Относительный вес атома химического элемента представляет собой среднее (с учетом относительной распространенности изотопов данного элемента) значение изотопного веса и называется атомным весом (массой).

Атом является микроскопической системой, и его строение и свойства могут быть объяснены лишь при помощи квантовой теории, созданной в основном в 20-е годы 20 века и предназначенной для описания явлений атомного масштаба. Опыты показали, что микрочастицы - электроны, протоны, атомы и т. д.,- кроме корпускулярных, обладают волновыми свойствами, проявляющимися в дифракции и интерференции. В квантовой теории для описания состояния микрообъектов используется некоторое волновое поле, характеризуемое волновой функцией (Ψ-функция). Эта функция определяет вероятности возможных состояний микрообъекта, т. е. характеризует потенциальные возможности проявления тех или иных его свойств. Закон изменения функции Ψ в пространстве и времени (уравнение Шредингера), позволяющий найти эту функцию, играет в квантовой теории ту же роль, что в классической механике законы движения Ньютона. Решение уравнения Шредингера во многих случаях приводит к дискретным возможным состояниям системы. Так, например, в случае атома получается ряд волновых функций для электронов, соответствующих различным (квантованным) значениям энергии. Система энергетических уровней атома, рассчитанная методами квантовой теории, получила блестящее подтверждение в спектроскопии. Переход атома из основного состояния, соответствующего низшему энергетическому уровню Е 0 , в какое-либо из возбужденных состояний E i происходит при поглощении определенной порции энергии Е i - Е 0 . Возбужденный атом переходит в менее возбужденное или основное состояние обычно с испусканием фотона. При этом энергия фотона hv равна разности энергий атома в двух состояниях: hv= E i - Е k где h - постоянная Планка (6,62·10 -27 эрг·сек), v - частота света.

Кроме атомных спектров, квантовая теория позволила объяснить и другие свойства атомов. В частности, были объяснены валентность, природа химической связи и строение молекул, создана теория периодической системы элементов.

ОПРЕДЕЛЕНИЕ

Атом – наименьшая химическая частица.

Многообразие химических соединений обусловлено различным сочетанием атомов химических элементов в молекулы и немолекулярные вещества. Способность же атома вступать в химические соединения, его химические и физические свойства определяются структурой атома. В связи с этим для химии первостепенное значение имеет внутреннее строение атома и в первую очередь структура его электронной оболочки.

Модели строения атома

В начале XIX века Д. Дальтон возродил атомистическую теорию, опираясь на известные к тому времени основополагающие законы химии (постоянства состава, кратных отношений и эквивалентов). Были проведены первые эксперименты по изучению строения вещества. Однако, несмотря на сделанные открытия (атомы одного и того же элементы обладают одними и теми же свойствами, а атомы других элементов – иными свойствами, введено понятие атомной массы), атом считали неделимым.

После получения экспериментальных доказательств (конец XIX начало XX века) сложности строения атома (фотоэффект, катодные и рентгеновские лучи, радиоактивность) было установлено, что атом состоит из отрицательно и положительно заряженных частиц, которые взаимодействуют между собой.

Эти открытия дали толчок к созданию первых моделей строения атома. Одна из перых моделей была предложена Дж. Томсоном (1904) (рис. 1): атом представлялся как «море положительного электричества» с колеблющимися в нем электронами.

После опытов с α-частицами, в 1911г. Резерфорд предложил так называемую планетарную модель строения атома (рис. 1), похожую на строение солнечной системы. Согласно планеетарной модели, в центре атома находится очень маленькое ядро с зарядом Z е, размеры которого приблизительно в 1000000 раз меньше размеров самого атома. Ядро заключает в себе практически всю массу атома и имеет положительный заряд. Вокруг ядра по орбитам движутся электроны, число которых определяется зарядом ядра. Внешняя траектория движения электронов определяет внешние размеры атома. Диаметр атома составляет 10 -8 см, в то время, как диаметр ядра много меньше -10 -12 см.

Рис. 1 Модели строения атома по Томсону и Резерфорду

Опыты по изучению атомных спектров показали несовершенство планетарной модели строения атома, поскольку эта модель противоречит линейчатой структуре атомных спектров. На основании модели Резерфорда, учении Энштейна о световых квантах и квантовой теории излучения планка Нильс Бор (1913) сформулировал постулаты , в которых заключается теория строения атома (рис. 2): электрон может вращаться вокруг ядра не по любым, а только по некоторым определенным орбитам (стационарным), двигаясь по такой орбите он не излучает электромагнитной энергии, излучение (поглощение или испускание кванта электромагнитной энергии) происходит при переходе (скачкообразном) электрона с одной орбиты на другую.

Рис. 2. Модель строения атома по Н. Бору

Накопленный экспериментальный материал, характеризующий строение атома, показал, что свойства электронов, а также других микрообъектов не могут быть описаны на основе представлений классической механики. Микрочастицы подчиняются законам квантовой механики, которая стала основой для создания современной модели строения атома .

Главные тезисы квантовой механики:

— энергия испускается и поглощается телами отдельными порциями – квантами, следовательно, энергия частиц изменяется скачкообразно;

— электроны и другие микрочастицы имеют двойственную природу – проявляет свойства и частицы, и волны (корпускулярно-волновой дуализм);

— квантовая механика отрицает наличие определенных орбит у микрочастиц (для движущихся электронов невозможно определить точное положение, т.к. они движутся в пространстве вблизи ядра, можно лишь определить вероятность нахождения электрона в различных частях пространства).

Пространство вблизи ядра, в котором достаточно велика вероятность нахождения электрона (90%), называется орбиталью .

Квантовые числа. Принцип Паули. Правила Клечковского

Состояние электрона в атоме можно описать с помощью четырех квантовых чисел .

n – главное квантовое число. Характеризует общий запас энергии электрона в атоме и номер энергетического уровня. nприобретает целочисленные значения от 1 до ∞. Наименьшей энергией электрон обладает при n=1; с увеличением n – энергия . Состояние атома, когда его электроны находятся на таких энергетических уровнях, что их суммарная энергия минимальна, называется основным. Состояния с более высокими значениями называются возбужденными. Энергетические уровни обозначаются арабскими цифрами в соответствии со значением n. Электроны можно расположить по семи уровням, поэтому, реально n существует от 1 до 7. Главное квантовое число определяет размеры электронного облака и определяет средний радиус нахождения электрона в атоме.

l – орбитальное квантовое число. Характеризует запас энергии электронов в подуровне и форму орбитали (табл. 1). Принимает целочисленные значения от 0 до n-1. l зависит от n. Если n=1,то l=0, что говорит о том, что на 1-м уровне 1-н подуровень.


m e – магнитное квантовое число. Характеризует ориентацию орбитали в пространстве. Принимает целочисленные значения от –l через 0 до +l. Так, при l=1 (p-орбиталь), m e принимает значения -1, 0, 1 и ориентация орбитали может быть различной (рис. 3).

Рис. 3. Одна из возможных ориентаций в пространстве p-орбитали

s – спиновое квантовое число. Характеризует собственное вращение электрона вокруг оси. Принимает значения -1/2(↓) и +1/2 (). Два электрона на одной орбитали обладают антипараллельными спинами.

Состояние электронов в атомах определяется принципом Паули : в атоме не может быть двух электронов с одинаковым набором всех квантовых чисел. Последовательность заполнения орбиталей электронами определяется правилами Клечковского : орбитали заполняются электронами в порядке возрастания суммы (n+l) для этих орбиталей, если сумма (n+l) одинакова, то первой заполняется орбиталь с меньшим значением n.

Однако, в атоме обычно присутствуют не один, а несколько электронов и, чтобы учесть их взаимодействие друг с другом используют понятие эффективного заряда ядра – на электрон внешнего уровня действует заряд, меньший заряда ядра, вследствие чего внутренние электроны экранируют внешние.

Основные характеристики атома: атомный радиус (ковалентный, металлический, ван-дер-ваальсов, ионный), сродство к электрону, потенциал ионизации, магнитный момент.

Электронные формулы атомов

Все электроны атома образуют его электронную оболочку. Строение электронной оболочки изображается электронной формулой , которая показывает распределение электронов по энергетическим уровням и подуровням. Число электронов на подуровне обозначается цифрой, которая записывается справа вверху от буквы, показывающей подуровень. Например, атом водорода имеет один электрон, который расположен на s-подуровне 1-го энергетического уровня: 1s 1 . Электронная формула гелия, содержащего два электрона записывается так: 1s 2 .

У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

Связь электронного строения атома с положением элемента в Периодической системе

Электронную формулу элемента определяют по его положению в Периодической системе Д.И. Менделеева. Так, номер периода соответствует У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

У атомов некоторых элементов, наблюдается явление «проскока» электрона с внешнего энергетического уровня на предпоследний. Проскок электрона происходит у атомов меди, хрома, палладия и некоторых других элементов. Например:

24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1

энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

Номер группы для элементов главных подгрупп равен числу электронов на внешнем энергетическом уровне, такие электроны называют валентными (они участвуют в образовании химической связи). Валентными электронами у элементов побочных подгрупп могут быть электроны внешнего энергетического уровня и d-подуровня предпоследнего уровня. Номер группы элементов побочных подгрупп III-VII групп, а также у Fe, Ru, Os соответствует общему числу электронов на s-подуровне внешнего энергетического уровня и d-подуровне предпоследнего уровня

Задания:

Изобразите электронные формулы атомов фосфора, рубидия и циркония. Укажите валентные электроны.

Ответ:

15 P 1s 2 2s 2 2p 6 3s 2 3p 3 Валентные электроны 3s 2 3p 3

37 Rb 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 1 Валентные электроны 5s 1

40 Zr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 2 5s 2 Валентные электроны 4d 2 5s 2

Химия- наука о веществах и их превращениях друг в друга.

Вещества- это химически чистые вещества

Химически чистое вещество- это совокупность молекул, имеющих одинаковый качественный и количественный состав и одинаковое строение.

СН 3 -О-СН 3 -

СН 3 -СН 2 -ОН

Молекула - мельчайшие частицы вещества, обладающие всеми его химическими свойствами; молекула состоит из атомов.

Атом- это химически неделимые частицы, из-за которых образованы молекулы. (для благородных газов молекула и атом одно и тоже, Не, Ar)

Атом- электронейтральная частица, состоящая из положительно заряженного ядра, вокруг которого по своим строго определенным законам распределены отрицательно заряженные электроны. Причём суммарный заряд электронов равен заряду ядра.

Ядро атомов состоит из положительно заряженных протонов (р) и нейтронов (n) не несущих никакого заряда. Общее название нейтронов и протонов – нуклоны. Масса протонов и нейтронов практически одинакова.

Электроны (е -) несут отрицательный, заряд равный заряду протона. Масса е - составляет приблизительно 0,05% от массы протона и нейтрона. Таким образом, вся масса атома сосредоточена в его ядре.

Число р в атоме, равные заряду ядра, называется порядковым номером (Z), так как атом электронейтрален число е - равно числу р.

Массовым числом (А) атома называется сумма протонов и нейтронов в ядре. Соответственно число нейтронов в атоме равно разности между А и Z. (массовым числом атома и порядковым номером).(N=А-Z).

17 35 Cl р=17, N=18, Z=17. 17р + , 18n 0 , 17е - .

Нуклоны

Химические свойства атомов определяется их электронным строением (число электронов), которое равно порядковому номеру атомов (заряду ядра). Следовательно, все атомы с одинаковым зарядом ядра в химическом отношении ведут себя одинаково и рассчитываются как атомы одного и того же химического элемента.

Химический элемент – это совокупность атомов с одинаковым зарядом ядра. (110 химических элементов).

Атомы, имея одинаковый заряд ядра, могут различаться массовым числом, что связанно с различным числом нейтронов в их ядрах.

Атомы, имеющие одинаковый Z, но различное массовое число называются изотопы.

17 35 Cl 17 37 Cl

Изотопы водорода Н:

Обозначение: 1 1 Н 1 2 Д 1 3 Т

Название: протий дейтерий тритий

Состав ядра: 1р 1р+1n 1р+2n

Протий и дейтерий-стабильны

Тритий-распадается(радиоактивный) Используется в водородных бомбах.

Атомная единица массы. Число Авогадро. Моль.

Массы атомов и молекул очень малы (приблизительно 10 -28 до 10 -24 г.), для практического отображения этих масс целесообразно ввести свою единицу измерения, которая бы приводила к удобной и привычной шкале.

Т.к масса атома сосредоточена в его ядре, состоящих из практически одинаковых по массе протонов и нейтронов, то логично за единицу массы атомов принять массу одного нуклона.

Условились за единицу массы атомов и молекул принять одну двенадцатую изотопа углерода, имеющее симметричное строение ядра (6р+6n). Эту единицу называют атомной единицей массы (а.е.м.), она численно равна массе одного нуклона. В этой шкале массы атомов близки к целочисленным значениям: Не-4; Al-27; Ra-226 а.е.м……

Рассчитаем массу 1 а.е.м в граммах.

1/12 (12 С)= =1,66*10 -24 г/а.е.м

Рассчитаем, какое количество а.е.м содержится в 1г.

N A = 6,02 *-число Авогадро

Полученное соотношение называется числом Авогадро, показывает сколько а.е.м содержится в 1г.

Массы атомов, приведенные в Периодической таблице выражены в а.е.м

Молекулярная масса- это масса молекулы, выраженная в а.е.м, находится как сумма масс всех атомов, образующих данную молекулу.

м(1 молекулы Н 2 SO 4)= 1*2+32*1+16*4= 98 а.е.м

Для перехода от а.е.м к практически используемой в химии 1 г ввели порционный подсчёт количества вещества причём в каждой порции содержится число N A структурных единиц (атомов, молекул, ионов, электронов). В этом случае масса такой порции, называемой 1 моль, выраженной в граммах, численно равна атомной или молекулярной массе, выраженных в а.е.м.

Найдём массу 1 моль Н 2 SO 4:

М(1 моль Н 2 SO 4)=

98а.е.м*1,66**6,02*=

Как видно молекулярная и молярная массы численно равны.

1 моль – количество вещества, содержащее число Авогадро структурных единиц (атомов, молекул, ионов).

Молекулярная масса(М) - масса 1 моль вещества, выраженная в граммах.

Количество вещества-V(моль); масса вещества м(г); молярная масса М(г/моль)-связаны соотношением: V=;

2Н 2 О+ О 2 2Н 2 О

2 моль 1 моль

2.Основные законы химии

Закон постоянства состава вещества- химически чистое вещество независимо от способа получения всегда имеет постоянный качественный и количественный составы.

CH3+2O2=CO2+2H2O

NaOH+HCl=NaCl+H2O

Вещества с постоянным составом называются- дальтониты. В качестве исключения известны вещества неизменного состава- бертолиты (оксиды, карбиды, нитриды)

Закон сохранения массы (Ломоносов)- масса веществ вступивших в реакцию всегда равна массе продуктов реакции. Из этого следует что атомы в ходе реакции не исчезают и не образуются они переходят из одних веществ в другие. На этом основан подбор коэффициентов в уравнении химической реакции, число атомов каждого элемента в левой и правой частях уравнения должно быть равно.

Закон эквивалента- в химических реакциях вещества реагируют и образуются в количествах равных эквиваленту (Сколько эквивалента одного вещества израсходовано, ровно столько же эквивалентов израсходовано или образовалось другого вещества).

Эквивалент- количество вещества, которое в ходе реакции присоединяет, замещает, высвобождает один моль атомов (ионов) H. Масса эквивалента выраженная в граммах называется эквивалентной массой (Э).

Газовые законы

Закон Дальтона- общее давление смеси газов равно сумме парциальных давлений всех компонентов газовой смеси.

Закон Авогадро- равные объёмы различных газов при одинаковых условиях содержат равное число молекул.

Следствие: один моль любого газа при нормальных условиях (t=0 градусов или 273K и P=1 атмосфера или 101255 Паскаль или 760 мм. Рт. Столба.) занимает V=22,4 л.

V который занимает один моль газа называется молярным объёмом Vm.

Зная объём газа (смеси газа) и Vm при данных условиях, легко рассчитать количество газа (газовой смеси) =V/Vm.

Уравнение Менделеева- Клапейрона.- связывает количество газа с условиями, при которых он находится. pV=(m/M)*RT= *RT

При использовании данного уравнения все физические величины должны быть выражены в СИ: p-давление газа (паскаль), V-объём газа (литры), m- масса газа (кг.) , М -молярная масса (кг/моль), Т-температура по абсолютной шкале (К), Ню-количество газа (моль), R- газовая постоянная = 8,31 Дж/(моль*К).

Д- относительная плотность одного газа по другому- отношение М газа к М газа, выбранного в качестве стандарта, показывает во сколько раз один газ тяжелее другого Д=М1/М2.

Способы выражения состава смеси веществ.

Массовая доля W- отношение массы вещества к массы всей смеси W=((m в-ва)/(m р-ра))*100%

Мольная доля æ -отношение кол-ва в-ва, к общему кол-ву всех вв. в смеси.

Большинство химических элементов в природе представлены в виде смеси различных изотопов; зная изотопный состав химического элемента, выраженный в мольных долях, рассчитывают средневзвешенное значение атомной массы этого элемента, которая и переводится в ИСХЭ. А= Σ (æi*Аi)= æ1*А1+ æ2*А2+…+ æn*Аn , где æi- мольная доля i-ого изотопа, Аi- атомная масса i-ого изотопа.

Объёмная доля (φ)- отношение Vi к объёму всей смеси. φi=Vi/VΣ

Зная объёмны состав газовой смеси, рассчитывают Мср смеси газов. Мср= Σ (φi*Mi)= φ1*М1+ φ2*М2+…+ φn*Мn

Поэтому для нас так важно упорядочить действительность, распределить ее элементы по клеточкам и найти систему. Иначе память отказывается слушаться, а разум - анализировать. Неслучайно в таким важным прорывом считается создание таблицы Менделеева - порядок, система и логика восторжествовали. Влияние этого открытия было так велико, что вдохновило многих. Например, Любищев, гений российского тайм-менеджмента, разработал свою систему для того, чтобы создать периодическую таблицу живых организмов. Цель эта достигнута не была, но сам факт доказывает важность логики для понимания человеком. Но реальность богаче красивых схем. Например, в главной таблице химии некоторые элементы стоят с нарушением порядка по массе. Почему? Ответить можно одним словом - «изотопы». Это слово в буквальном смысле означает «занимающие одно место».

Работали многие, помнят не всех

Таблица Менделеева - плод кропотливого труда многих ученых, а не только ее создателя. Он гениально создал сам принцип и нашел основные закономерности. А вот цифра массы, которую вы видите под каждым элементом - плод работы множества химиков, и кроме того, она неточна. Как так может быть? Возможно, вы когда-либо обращали внимание, что атомный номер - красивое целое число. А вот масса - дробное с огромным количеством знаков после запятой. Почему? А виноваты те же изотопы. Это объясняется довольно просто. Если вы посмотрите на цифры для элемента «азот», возле цифры атомной массы вы увидите 14,0067. Однако если вы «отловите» свободный атом азота, то он может весить и 10, и 25 атомных единиц. Разные они бывают. А в чем эта разница? Масса изотопа состоит из массы протонов и протонов - величина постоянная, именно она делает (азот - азотом). А вот нейтронами атом может быть как богат, так и беден. В примере с азотом их может быть и 18, и всего 3 штуки. Изотопы - это виды атомов элемента в зависимости от количества нейтронов в ядре. У азота встречается 16 изотопов. У некоторых других элементов бывает и больше.

А что делать ученому?

Если бы вы были учеными, как бы вы поступили? Как бы записали массу в таблицу для расчетов? Можно было, конечно, взять среднее арифметическое. Но очень многие изотопы - это объекты весьма нестабильные, часть из них - искусственно созданные. Поэтому неправильно было бы проводить расчеты с ориентацией на неточные данные. Ученые поступили по-другому - они рассчитали атомную массу элемента пропорционально природной распространенности того или иного изотопа. В итоге вероятность того, что при произвольном поиске вам попался именно изотоп в 14 единиц массы, очень велика. Ядро изотопа, найденного случайно, скорее всего, будет содержать 7 протонов и 7 нейтронов.

Причины неточности

Почему же не совсем точна? Потому что вывод о ней сделан индуктивно - от частного к общему. Мы не знаем точный состав Земли под корой, мы не исследовали геологически даже просто всю поверхность Земли. Поэтому цифра атомной массы - вероятностная. Она основана на тех знаниях, которые люди имеют на сегодня. Почему же ученых это удовлетворяет? Потому что большая точность нужна лишь для для банальных расчетов количеств погрешностью можно пренебречь. А вот нарушение порядка по массе объяняется тем, что для химических свойств важно количество заряженных частиц - протонов. И именно по количеству протонов элементы и выстроены последовательно.