Отношение медиан. Свойства медиан треугольника. Свойства оснований медиан

Чтобы по сторонам треугольника найти медиану, не обязательно запоминать дополнительную формулу. Достаточно знать алгоритм решения.

Для начала рассмотрим задачу в общем виде.

Дан треугольник со сторонами a, b, c. Найти длину медианы, проведенной к стороне b.

AB=a, AC=b, BC=c.

На луче BF отложим отрезок FD, FD=BF.

Соединим точку D с точками A и C.

Четырехугольник ABCD — параллелограмм (по признаку), так как у него диагонали в точке пересечения делятся пополам.

Свойство диагоналей параллелограмма: сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон.

Отсюда: AC²+BD²=2(AB²+BC²), значит, b²+BD²=2(a²+c²),

BD²=2(a²+c²)-b². По построению, BF — половина BD, следовательно,

Это — формула нахождения медианы треугольника по его сторонам. Обычно ее записывают так:

Переходим к рассмотрению конкретной задачи.

Стороны треугольника равны 13 см, 14 см и 15 см. Найти медиану треугольника, проведенную к его средней по длине стороне.

Применяя аналогичные рассуждения, получаем:

AC²+BD²=2(AB²+BC²).

14²+BD²=2(13²+15²)

Медиана треугольника, так же, как и высота служит графическим параметром, определяющим весь треугольник, значение его сторон и углов. Три значения: медианы, высоты и биссектрисы - это, как штрих-код на товаре, наша задача просто уметь его считать.

Определение

Медиана - это отрезок, соединяющий высоту и середину противоположной стороны. В треугольнике три вершины, а значит и медианы три. Медианы не всегда совпадают с высотами или биссектрисами. Чаще всего это отдельные отрезки.

Свойства медиан

  • Медиана равнобедренного треугольника, проведенная к основанию, совпадает с высотой и биссектрисой. В равностороннем треугольнике все медианы совпадают с биссектрисами и высотами.
  • Все медианы треугольника пересекаются в одной точке.
  • Медиана делит треугольник на два равновеликих, а три медианы, на 6 равновеликих треугольника.

Равновеликими называют треугольники, площади которых равны.

Рис. 1. Три медианы образуют 6 равновеликих треугольника.

  • Точка пересечения медиан делит их в отношении 2:1, считая от вершины.
  • Медиана, проведенная к гипотенузе прямоугольного треугольника, равна половине гипотенузы.

Задачи

Все эти свойства несложно запомнить, они легко закрепляются на практике. Для большего понимания темы, решим несколько задач:

  • В прямоугольном треугольнике известны катеты, которые равны a=3 и b=4. Найти значение медианы m, проведенной к гипотенузе c.

Рис. 2. Рисунок к задаче.

Для того, чтобы найти значение медианы, нам необходимо найти гипотенузу, так как медиана, проведенная к гипотенузе равна ее половине. Гипотенуза через теорему Пифагора: $$a^2+b^2=c^2$$

$$c=\sqrt{a^2+b^2}=\sqrt{9+16}=\sqrt{25}=5$$

Найдем значение медианы: $$m={c\over2}={5\over2}=2,5$$ - получившееся число и есть значение медианы.

Значения медиан в треугольнике не равны. Поэтому нужно обязательно представлять, какую именно величину необходимо найти.

  • В треугольнике известны значения сторон: a=7; b=8; c=9. Найти значение медианы, опущенной к стороне b.

Рис. 3. Рисунок к задаче.

Чтобы решить эту задачу нужно воспользоваться одной из трех формул для нахождения медианы по сторонам треугольника:

$$m^2 ={1\over2}*(a^2+c^2-b^2)$$

Как видно, главное здесь запомнить коэффициент при скобках и знаки у значения сторон. Знаки запомнить проще всего - вычитается всегда сторона, к которой опущена медиана. В нашем случае это b, но может быть любая другая.

Подставим значения в формулу и найдем величину медианы: $$m=\sqrt{{1\over2}*(a^2+c^2-b^2)}$$

$$m=\sqrt{{1\over2}*(49+81-64)}=\sqrt{33}$$ - оставим результат в виде корня.

  • В равнобедренном треугольнике медиана, проведенная к основанию равна 8, а само основание 6. Вместе с оставшимися двумя, эта медиана делит треугольник на 6 треугольников. Найти площадь каждого из них.

Медианы, разбивают треугольник на шесть равновеликих. Значит, площади малых треугольников будут равны между собой. Достаточно найти площадь большего и поделить ее на 6.

Дана медиана, проведенная к основанию, в равнобедренном треугольнике она является биссектрисой и высотой. Значит в треугольнике известны основание и высота. Можно найти площадь.

$$S={1\over2}*6*8=24$$

Площадь каждого из малых треугольников: $${24\over6}=4$$

Что мы узнали?

Мы узнали, что такое медиана. Определили свойства медианы, и нашли решение типовых задач. Поговорили о базовых ошибках и разобрались как просто и быстро запомнить формулу нахождения медианы через стороны треугольника.

Тест по теме

Оценка статьи

Средняя оценка: 4.7 . Всего получено оценок: 84.

Гомельская научно-практическая конференция школьников по математике, ее приложениям и информационным технологиям «Поиск»

Реферат на тему:

«Медианы треугольника»

Учеников:

9" класса государственного

учреждения образования

«Гомельская городская

Многопрофильная гимназия № 14»

Морозовой Елизаветы

Ходосовской Алеси

Научный руководитель-

Учитель математики высшей категории

Сафонова Алла Викторовна

Гомель 2009


Введение

1. Медианы треугольника и их свойства

2. Открытие немецкого математика Г. Лейбница

3. Применение медиан в математической статистике

4. Медианы тетраэдра

5. Шесть доказательств теоремы о медианах

Заключение

Список использованных источников и литературы

Приложение


Введение

Геометрия начинается с треугольника. Вот уже два тысячелетия треугольник является как бы символом геометрии, но он не символ. Треугольник – атом геометрии.

Треугольник неисчерпаем – постоянно открываются его новые свойства. Чтобы рассказать о всех известных его свойствах, необходим том сравнимый по объему с томом Большой энциклопедии. Мы хотим рассказать о медиане треугольника и ее свойствах, а так же о применении медиан.

Сначала вспомним, что медиана треугольника – это отрезок соединяющий вершины треугольника с серединой противоположной стороны. Медианы имеют множество свойств. Но мы рассмотрим одно свойство и 6 различных его доказательств. Три медианы пересекаются в одной точке, которая называется центроидом (центром масс) и делятся в отношении 2:1.

Существует медианы не только треугольника, но и тетраэдра. Отрезок, соединяющий вершину тетраэдра с центроидом (точкой пересечения медиан) противолежащей грани называется медианой тетраэдра. Мы так же рассмотрим свойство медиан тетраэдра.

Медианы используются в математической статистике. Например, для нахождения среднего значения некоторого набора чисел.


1. Медианы треугольника и их свойства

Как известно, медианами треугольника называются отрезки, соединяющие его вершины с серединами противоположных сторон. Все три медианы пересекаются в одной точке и делятся ею в отношении 1:2.

Точка пересечения медиан является также центром тяжести треугольника. Если подвесить картонный треугольник в точке пересечения его медиан то он будет находиться в состоянии равновесия

Любопытно, что вcе шесть треугольников, на которые всякий треугольник разбивается своими медианами, имеют одинаковые площади.

Медианы треугольника через его стороны выражаются так:

, , .

Если две медианы перпендикулярны, то сумма квадратов сторон, на которые они опущены, в 5 раз больше квадрата третьей стороны.

Построим треугольник, стороны которого равны медианам данного треугольника, тогда медианы построенного треугольника будут равны 3/4 сторон первоначального треугольника.

Данный треугольник назовем первым, треугольник из его медиан - вторым, треугольник из медиан второго - третьим и т. д. Тогда треугольники с нечетными номерами (1,3, 5, 7,...) подобны между собой и треугольники с четными номерами (2, 4, 6, 8,...) также подобны между собой.

Сумма квадратов длин всех медиан треугольника равняется ¾ суммы квадратов длин его сторон.


2. Открытие немецкого математика Г. Лейбница

Знаменитый немецкий математик Г. Лейбниц обнаружил замечательный факт: сумма квадратов расстояний от произвольной точки плоскости до вершин треугольника, лежащего в этой плоскости, равняется сумме квадратов расстояний от точки пересечения медиан до его вершин, сложенной с утроенным квадратом расстояния от точки пересечения медиан до выбранной точки.

Из этой теоремы следует, что точка на плоскости, для которой сумма квадратов расстояний до вершин данного треугольника является минимальной,- это точка пересечения медиан этого треугольника.

В то же время минимальная сумма расстояний до вершин треугольника (а не их квадратов) будет для точки, из которой каждая сторона треугольника видна под углом в 120°, если ни один из углов треугольника не больше 120° (точка Ферма), и для вершины тупого угла, если он больше 120°.

Из теоремы Лейбница и предыдущего утверждения легко найти расстояние d от точки пересечения медиан до центра описанной окружности. Действительно, это расстояние по теореме Лейбница равно корню квадратному из одной трети разности между суммой квадратов расстояний от центра описанной окружности до вершин треугольника и суммой

Квадратов расстояний от точки пересечения медиан до вершин треугольника. Получаем, что

.

Точка М пересечения медиан треугольника AВС является единственной точкой треугольника, для которой сумма векторов МА, MB и МС равна нулю. Координаты точки М (относительно произвольных осей) равны средним арифметическим соответствующих координат вершин треугольника. Из этих утверждений можно получить доказательство теоремы о медианах.

3. Применение медиан в математической статистике

Медианы бывают не только в геометрии, но и в математической статистике. Пусть нужно найти среднее значение некоторого набора чисел

, , ..., а п. Можно, конечно, за среднее принять среднее арифметическое

Но иногда это неудобно. Допустим, что нужно определить средний рост второклассников Москвы. Опросим наугад 100 школьников и запишем их рост. Если один из ребят в шутку скажет, что его рост равен километру, то среднее арифметическое записанных чисел окажется слишком большим. Гораздо лучше в качестве среднего взять медиану чисел

, ..., а п.

Предположим, что чисел - нечетное количество, и расставим их в неубывающем порядке. Число, оказавшееся на среднем месте, называется медианой набора. Например, медиана набора чисел 1, 2, 5, 30, 1, 1, 2 равна 2 (а среднее арифметическое значительно больше - оно равно 6).

4. Медианы тетраэдра

Оказывается, можно говорить о медианах не только для треугольника, но и для тетраэдра. Отрезок, соединяющий вершину тетраэдра с центроидом (точкой пересечения медиан) противолежащей грани, называется медианой тетраэдра. Как и медианы треугольника, медианы тетраэдра пересекаются в одной точке, центре масс или центроиде тетраэдра, но отношение, в котором они делятся в этой точке, иное – 3:1, считая от вершин. Эта же точка лежит и на всех отрезках, соединяющих середины противоположных ребер тетраэдра, его бимедианах, и делит их пополам. Это можно доказать, например, из механических соображений, поместив в каждую из четырех вершин тетраэдра грузики единичной массы.

5. Шесть доказательств теоремы о медианах

Давно замечено, что познакомиться с разными решениями одной задачи бывает полезнее, чем с однотипными решениями разных задач. Одной из теорем, допускающих, как и многие другие классические теоремы элементарной геометрии, несколько поучительных доказательств, является

Теорема о медианах треугольника. Медианы , В и С треугольника ABC пересекаются в некоторой точке М, причем каждая из них делится этой точкой в отношении 2:1, считая от вершины: AM : M = BM : M = CM : M =2. (1)

Во всех приводимых далее доказательствах, кроме шестого, мы устанавливаем только, что медиана В проходит через точку М, которая делит медиану А в отношении 2:1. Если в соответствующем рассуждении заменить отрезок В на отрезок С , то мы получим, что и С проходит через М. Этим будет доказано, что все три медианы пересекаются в некоторой точке М, причем АМ:М - 2. Поскольку все медианы равноправны, можно заменить А на В или СС 1 отсюда вытекает (1).

Содержащую этот отрезок. Точка пересечения медианы со стороной треугольника называется основанием медианы .

  • Можно также ввести понятие внешней медианы треугольника.

Энциклопедичный YouTube

    1 / 3

    ✪ МЕДИАНЫ биссектрисы и ВЫСОТЫ треугольника - 7 класс

    ✪ Медиана треугольника. Построение. Свойства.

    ✪ биссектриса, медиана, высота треугольника. Геометрия 7 класс

    Субтитры

Свойства

Основное свойство

Все три медианы треугольника пересекаются в одной точке , которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.

Свойства медиан равнобедренного треугольника

  • В равнобедренном треугольнике две медианы, проведенные к равным сторонам треугольника, равны, а третья медиана одновременно является биссектрисой и высотой .
  • Верно и обратное: если в треугольнике две медианы равны, то треугольник - равнобедренный, а третья медиана одновременно является биссектрисой и высотой угла при своей вершине.
  • У равностороннего треугольника все три медианы равны.

Свойства оснований медиан

  • Теорема Эйлера для окружности девяти точек : основания трёх высот произвольного треугольника, середины трёх его сторон (основания его медиан ) и середины трёх отрезков, соединяющих его вершины с ортоцентром , все лежат на одной окружности (так называемой окружности девяти точек ).
  • Отрезок, проведенный через основания двух любых медиан треугольника, является его средней линией . Средняя линия треугольника всегда параллельна той стороне треугольника, с которой она не имеет общих точек.
    • Следствие (теорема Фалеса о параллельных отрезках). Средняя линия треугольника равна половине длины той стороны треугольника, которой она параллельна.

Другие свойства

  • Если треугольник разносторонний (неравносторонний ), то его биссектриса , проведённая из любой вершины, лежит между медианой и высотой , проведёнными из той же вершины.
  • Медиана разбивает треугольник на два равновеликих (по площади) треугольника.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников.
  • Из отрезков, образующих медианы, можно составить треугольник, площадь которого будет равна 3/4 от всего треугольника. Длины медиан удовлетворяют неравенству треугольника .
  • В прямоугольном треугольнике медиана, проведённая из вершины с прямым углом, равняется половине гипотенузы.
  • Большей стороне треугольника соответствует меньшая медиана.
  • Отрезок прямой, симметричный или изогонально сопряжённый внутренней медиане относительно внутренней биссектрисы, называется симедианой треугольника. Три симедианы проходят через одну точку - точку Лемуана .
  • Медиана угла треугольника изотомически сопряжена самой себе.

Основные соотношения

В частности, сумма квадратов медиан произвольного треугольника составляет 3/4 от суммы квадратов его сторон: m a 2 + m b 2 + m c 2 = 3 4 (a 2 + b 2 + c 2) {\displaystyle m_{a}^{2}+m_{b}^{2}+m_{c}^{2}={\frac {3}{4}}(a^{2}+b^{2}+c^{2})} .

  • Обратно, можно выразить длину произвольной стороны треугольника через медианы:
a = 2 3 2 (m b 2 + m c 2) − m a 2 {\displaystyle a={\frac {2}{3}}{\sqrt {2(m_{b}^{2}+m_{c}^{2})-m_{a}^{2}}}} , где m a , m b , m c {\displaystyle m_{a},m_{b},m_{c}} медианы к соответствующим сторонам треугольника, a , b , c {\displaystyle a,b,c} - стороны треугольника.

При изучении какой-либо темы школьного курса можно отобрать определенный минимум задач, овладев методами решения которых, учащиеся будут в состоянии решить любую задачу на уровне программных требований по изучаемой теме. Предлагаю рассмотреть задачи, которые позволят увидеть взаимосвязи отдельных тем школьного курса математики. Поэтому составленная система задач является эффективным средством повторения, обобщения и систематизации учебного материала в ходе подготовки учащихся к экзамену.

Для сдачи экзамена не лишними будут дополнительные сведения о некоторых элементах треугольника. Рассмотрим свойства медианы треугольника и задачи, при решении которых этими свойствами можно воспользоваться. В предложенных задачах реализуется принцип уровневой дифференциации . Все задачи условно поделены на уровни (уровень указан в скобках после каждого задания).

Вспомним некоторые свойства медианы треугольника

Свойство 1. Докажите, что медиана треугольника ABC , проведённая из вершины A , меньше полусуммы сторон AB и AC .

Доказательство

https://pandia.ru/text/80/187/images/image002_245.gif" alt="$\displaystyle {\frac{AB + AC}{2}}$" width="90" height="60">.

Свойство 2. Медиана рассекает треугольник на два равновеликих.

Доказательство

Проведем из вершины B треугольника ABC медиану BD и высоту BE..gif" alt="Площадь" width="82" height="46">

Поскольку отрезок BD является медианой, то

что и требовалось доказать.

https://pandia.ru/text/80/187/images/image008_96.gif" alt="Медиана" align="left" width="196" height="75 src=">Свойство 4. Медианы треугольника делят треугольник на 6 равновеликих треугольников.

Доказательство

Докажем, что площадь каждого из шести треугольников, на которые медианы разбивают треугольник ABC, равна площади треугольника ABC. Для этого рассмотрим, например, треугольник AOF и опустим из вершины A перпендикуляр AK на прямую BF .

В силу свойства 2,

https://pandia.ru/text/80/187/images/image013_75.gif" alt="Медиана" align="left" width="105" height="132 src=">

Свойство 6. Медиана в прямоугольном треугольнике, проведённая из вершины прямого угла, равна половине гипотенузы.

Доказательство

https://pandia.ru/text/80/187/images/image015_62.gif" alt="Медиана" width="273" height="40 src="> что и требовалось доказать.

Следствия: 1. Центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы.

2. Если в треугольнике длина медианы равна половине длины стороны, к которой она проведена, то этот треугольник – прямоугольный.

ЗАДАЧИ

При решении каждой последующей задачи используются доказанные свойства.

№1 Темы: Удвоение медианы. Сложность: 2+

Признаки и свойства параллелограмма Классы: 8,9

Условие

На продолжении медианы AM треугольника ABC за точку M отложен отрезок MD , равный AM . Докажите, что четырёхугольник ABDC - параллелограмм.

Решение

Воспользуемся одним из признаков параллелограмма. Диагонали четырёхугольника ABDC пересекаются в точке M и делятся ею пополам, поэтому четырёхугольник ABDC - параллелограмм.