Цезий 137 в организме человека. Радионуклиды: правда и мифы. Образование и распад

РАДИОАКТИВНЫЕ ЭЛЕМЕНТЫ

Это химические элементы, имеющие нестабильные атомные ядра, которые самопроизвольно распадаются, превращаясь в атомные ядра других элементов и при этом испуская частицы (электроны, протоны, позитроны, нейтроны) и кванты электромагнитного излучения (рентгеновские и гамма-лучи), которые могут вызывать мутагенные, канцерогенные, тератогенные и другие изменения в живых организмах, а также негативные экологические явления.
  Здесь приведены данные о некоторых радиоактивных элементах, в обнаруженных в местах радиоактивного загрязнения на территории Москвы.

Цезий-137, Cs-137
  Цезий-137, известен также как радиоцезий - один из главных компонентов радиоактивного загрязнения биосферы. Содержится в радиоактивных выпадениях, радиоактивных отходах, сбросах заводов, перерабатывающих отходы атомных электростанций. Интенсивно сорбируется почвой и донными отложениями; в воде находится преимущественно в виде ионов. Содержится в растениях и организме животных и человека.
  В организме животных 137Cs накапливается главным образом в мышцах и печени
  Выброс цезия-137 в окружающую среду происходит в основном в результате ядерных испытаний и аварий на предприятиях атомной энергетики
  Известны случаи загрязнения внешней среды в результате небрежного хранения источников цезия-137 для медицинских и технологических целей.
  Биологическое действие
  Внутрь живых организмов цезий-137 в основном проникает через органы дыхания и пищеварения. Хорошей защитной функцией обладает кожа

Поглощённая доза излучения измеряется энергией ионизирующего излучения, переданного массе облучаемого вещества.
  Единица поглощённой дозы – грей (Гр), равный 1 джоулю, поглощённому 1 кг вещества
  1 Гр = 1Дж/кг = 100 рад.

Развитие радиационных поражений у человека можно ожидать при поглощении дозы примерно в 2 Гр и более. Симптомы во многом схожи с острой лучевой болезнью при гамма-облучении: угнетённое состояние и слабость, диарея, снижение массы тела, внутренние кровоизлияния
  Радионуклиды Cs-137, проникая в организм человека, инкорпорируются жизненно важными органами. При этом, в клетках происходят дистрофические и некробиотические изменения, связанные в первую очередь с нарушением энергетических механизмов и приводящие к нарушениям жизненно-важных функций организма. Тяжесть поражения находится в прямой зависимости от количества Cs-137 инкорпорированного организмом и отдельными органами. Эти поражения могут представлять опасность, прежде всего, как индукторы мутаций в генетическом аппарате половых и соматических клеток.

Способность Cs-137 вызывать мутации в половых клетках, будет являться в будущих поколениях основой для возникновения внутриутробной гибели зародыша, врожденных пороков развития, патологии плода и новорожденного, заболеваний взрослого организма, связанных с недостаточной генной активностью.

Это внутреннее облучение организма также чрезвычайно опасно и тем, что оно сочетается со способностью радионуклидов Cs-137 и продуктов их распада в виде бария, воздействовать на биологические структуры, взаимодействовать с рецепторным аппаратом клеточных мембран, изменять состояние регуляторных процессов.
  Выявлена зависимость между частотой нарушений сердечной деятельности у детей и содержанием радионуклидов в их организме. Следует обратить особое внимание на то, что присутствие даже относительно небольших количеств Cs-137 в организме детей 10-30 Бк/кг (при этом, в ткани сердца концентрация данного радионуклида значительно большая) приводит к увеличению в два раза числа детей с электрокардиографическими нарушениями.
  В этой связи, факторы внешней среды, подавляющие функцию систем, регулирующих (стимулирующих) активность генетического аппарата клеток, будут являться индукторами (провокаторами) возникновения многих заболеваний. Cs-137 способен в относительно небольших количествах, подавлять активность регуляторных систем организма, и прежде всего, иммунной системы.
  Период полураспада цезия-137 составляет 30 лет.

Радий, Ra-226
  радиоактивный изотоп химического элемента радия с атомным номером 88 и массовым числом 226. Принадлежит к радиоактивному семейству урана-238
  Наиболее устойчивым изотопом является радий-226 (226Ra), образующийся при распаде урана. Период полураспада радия-226 составляет 1600 лет, в процессе распада образуется радиоактивный газ радон.
  Радий-226 является источником альфа-излучения и считается потенциально опасным для костной ткани человека.
  В ничтожных концентрациях присутствует в природных водах.
  Применение
  Соли радия используются в медицине как источник радона (см. РАДОН) для приготовления радоновых ванн.

Развиваются опухоли костной ткани и органов, заключённых в костной капсуле (кроветворная ткань, гипофиз) или топографически близких к ней (слизистая ротовой полости, гайморова полость).

Кобальт-60, Co-60
  Кобальт-60, радиокобальт - радиоактивный нуклид химического элемента кобальта с атомным номером 27 и массовым числом 60. В природе практически не встречается из-за малого периода полураспада. Открыт в конце 1930-х годов

Активность одного грамма этого нуклида составляет приблизительно 41,8 ТБк. Период полураспада кобальта-60 составляет 5,2 года
  Применение Кобальт-60 используется в производстве источников гамма-излучения с энергией около 1,3 МэВ, которые применяются для:
  - стерилизации пищевых продуктов, медицинских инструментов и материалов;
  - активации посевного материала (для стимуляции роста и урожайности зерновых и овощных культур);
  - обеззараживания и очистки промышленных стоков, твёрдых и жидких отходов различных видов производств;
  - радиационной модификации свойств полимеров и изделий из них;
  - радиохирургии различных патологий (см. «кобальтовая пушка», гамма-нож);
  - гамма-дефектоскопии.
  Также Кобальт-60 используется в системах контроля уровня металла в кристализаторе при непрерывной разливке стали. Является одним из изотопов, применяющихся в радиоизотопных источниках энергии.
  Его лучи обладают высокой проникающей способностью. По мощности излучения 17 граммов радиоактивного кобальта эквивалентны 1 килограмму радия - самого мощного природного источника радиации. Вот почему при получении, хранении и транспортировке этого изотопа, как, впрочем, и других, тщательно соблюдают строжайшие правила техники безопасности, принимают все необходимые меры, чтобы надежно оградить людей от смертоносных лучей.

У радиоактивного кобальта много «профессий». Все более широкое применение в промышленности находит, например, гамма-дефектоскопия, т.е. контроль качества продукции путем просвечивания ее гамма-лучами, источником которых служит изотоп кобальт-60. Такой метод контроля позволяет с помощью сравнительно недорогой и компактной аппаратуры легко выявлять трещины, поры, свищи и другие внутренние дефекты массивных отливок, сварных швов, узлов и деталей, находящихся в труднодоступных местах. В связи с тем, что гамма-лучи распространяются источником равномерно во все стороны, метод дает возможность контролировать одновременно большое число объектов, а цилиндрические изделия проверять сразу по всему периметру.

Радиоактивный кобальт используют для контроля и регулирования уровня расплавленного металла в плавильных печах, уровня шихтовых материалов в домнах и бункерах, для поддержания уровня жидкой стали в кристаллизаторе установок непрерывной разливки.

Прибор, называемый гамма-толщиномером, быстро и с большой степенью точности определяет толщину обшивки судовых корпусов, стенок труб, паровых котлов и других изделий, когда к их внутренней поверхности невозможно подобраться и поэтому обычные приборы оказываются бессильны.

Находит кобальт применение и в медицине. Крупицы изотопа кобальт-60, помещенные в медицинские «пушки», не причиняя вреда организму человека, бомбардируют гамма-лучами внутренние злокачественные опухоли, губительно влияя на быстро размножающиеся больные клетки, приостанавливая их деятельность и тем самым ликвидируя очаги страшной болезни.
  В аппарате для облучения глубокозалегающих злокачественных опухолей, «кобальтовой пушке» ГУТ-400 (гамма-установка терапевтическая), количество кобальта-60 соответствует по своей активности 400 г радия. Это очень большая величина, такого количества радия нет ни в одной лаборатории. Но именно высокая активность позволяет предпринимать попытки лечения опухолей, расположенных в глубине организма больного.
  Однако, несмотря на свою столь обширную плезность радиация есть радиация и бесконтрольное облучение приводит к описанным выше печальным последствиям.

Торий-232, Th-232
  Торий-232 - природный радиоактивный нуклид химического элемента тория с атомным номером 90 и массовым числом 232.
  Является наиболее долгоживущим изотопом тория, альфа-радиоактивен с периодом полураспада 1,405·10 10 (14 млрд.) лет.
  Торий-232 является альфа – излучателем
  Активность одного грамма этого нуклида составляет 4 070 Бк.
  В виде препарата торотраста суспензия диоксида тория использовалась в качестве контрастного вещества при ранней рентгенодиагностике. В настоящее время препараты тория-232 классифицируются как канцерогенные
  Поступление тория в желудочно-кишечный тракт (тяжелый металл, к тому же радиоактивный!) не вызывает отравления. Объясняется это тем, что в желудке – кислая среда, и в этих условиях соединения тория гидролизуются. Конечный продукт – нерастворимая гидроокись тория, которая выводится из организма. Острое отравление способна вызвать лишь нереальная доза в 100 г тория...
  Однако чрезвычайно опасно попадание тория в кровь. Следствием этого могут быть заболевания кроветворной системы, образование специфических опухолей.

Плутоний-239, Pu-239
  Плутоний-239 (англ. plutonium-239) - радиоактивный нуклид химического элемента плутония с атомным номером 94 и массовым числом 239.
  В природе встречается в чрезвычайно малых количествах в урановых рудах.
  Активность одного грамма этого нуклида составляет приблизительно 2,3 ГБк.
  Плутоний-239 имеет период полураспада 24 100 лет.
  Плутоний-239 используют:
  - в качестве ядерного топлива в ядерных реакторах на тепловых и особенно на быстрых нейтронах;
  - при изготовлении ядерного оружия;
  - в качестве исходного вещества для получения трансплутониевых элементов.
  Плутоний был открыт в конце 1940 г.
  Хотя плутоний, по-видимому, химически токсичен, как и любой тяжелый металл, этот эффект выражается слабо по сравнению с его радиотоксичностью. Токсические свойства плутония появляются как следствие альфа-радиоактивности.
Альфа частицы представляют серьезную опасность только в том случае, если их источник находится в теле (т.е. плутоний должен быть принят внутрь). Хотя плутоний излучает еще и гамма-лучи и нейтроны, которые могут проникать в тело снаружи, уровень их слишком мал, чтобы причинить сильный вред.

Альфа-частицы повреждают только ткани, содержащие плутоний или находящиеся в непосредственном контакте с ним. Значимы два типа действия: острое и хроническое отравления. Если уровень облучения достаточно высок, ткани могут страдать острым отравлением, токсическое действие проявляется быстро. Если уровень низок, создается накопляющийся канцерогенный эффект.

Плутоний очень плохо всасывается желудочно-кишечным трактом, даже когда попадает в виде растворимой соли, впоследствии она все равно связывается содержимым желудка и кишечника. Загрязненная вода, из-за предрасположенности плутония к осаждению из водных растворов и к формированию нерастворимых комплексов с остальными веществами, имеет тенденцию к самоочищению.

Говоря о радионуклидах в продуктах питания, мы прежде всего подразумеваем опасные Стронций-90 и Цезий-137. Именно они в больших количествах попадают в окружающую среду во время аварий на атомных станциях и ядерных взрывов. А учитывая их сравнительно большой период полураспада (около 30 лет) они рано или поздно могут попасть в наш обед.

Из атомного реактора - в тарелку с фруктами

Организм человека имеет замечательное свойство - он умеет распознавать «своих» и «чужих». К примеру, порция желе - переварится и почти полностью усвоится, а случайно проглоченная жвачка - нет. Проблема радионуклидов в том, что наш организм воспринимает их как необходимые ему микроэлементы. Они усваиваются и участвуют в обмене веществ. Аналогично усваиваются радионуклиды и сельскохозяйственными растениями и животными. Таким образом, с мясом, молоком и фруктами они попадают на наш стол.

Стронций-90 - вред для человека

Вред стронция для человека прежде всего в том, что наш организм ошибочно принимает его за кальций. Попадая в организм, радионуклид занимает место необходимого нам кальция в костях, нарушая их структуру. Опасность этого легко представить: вообразите дом, сложенный из одинаковых стандартных кирпичей. А теперь представьте себе, что часть из них заменена газобетонными блоками, вдвое превышающими размер кирпича.

Костная ткань, в которой кальций заменился стронцием, подвержена переломам, но это не единственная опасность. Со стопроцентной вероятностью со встроившимся в кости стронцием случится радиоактивный распад. Это означает, что он превратится в атом другого элемента, при этом испустив бета-частицу - то, что мы называем «радиацией», «излучением» и т. п. На своем пути она, как выпущенная с большой скоростью пуля, может повреждать структуры клетки и - что самое опасное - ДНК, «основной закон» нашего организма. От таких повреждений информация, записанная в ней может исказиться, и такая клетка может дать начало злокачественной опухоли. Учитывая то, что стронций в организме человека предпочитает находиться в костях, больше всего страдает от таких радио-повреждений костный мозг.

Если стронций уже попал в организм, вывести его очень сложно, ведь костная ткань не обновляется ежеминутно. Именно поэтому главное в профилактике всех радиоактивных проблем - это осторожный подбор продуктов питания.

Цезий-137 - вред для человека

Радиоактивный цезий является двойником калия, поэтому попав в организм, подменяет его во всех процессах. Это в первую очередь касается мышц - именно здесь накапливается большая часть поглощенного цезия. Вред цезия-137 для человека в первую очередь связан с его радиоактивностью. На пути своих радиоактивных превращений он будет облучать окружающие ткани гамма- и бета-лучами, вызывая мутации и повреждения на клеточном уровне.

Хорошая новость - цезий, в отличии от стронция, выводится из организма человека со временем. В этом основная заслуга принадлежит почкам. Именно поэтому рекомендовано принимать мочегонные средства в случаях, когда в организм попала порция радиоактивного цезия - после аварий и т.п.

Постоянное влияние цезия-137 на человека в долгосрочной перспективе может вызвать появление злокачественных опухолей. Поглощение больших доз (при авариях и взрывах) вызывает лучевую болезнь, но это проблема скорее радиационной, а не пищевой безопасности.

Никогда не приобретайте ягоды, грибы, овощи и молокопродукты, если происхождение их неизвестно. Относитесь осторожно к продуктам, происходящим из:
— областей, загрязненных вследствие аварии на АЭС - например, Брянской;
— Южного Урала;
— Барнаула и Новосибирска.

Накапливать радионуклиды может и речная рыба. В случае минимальных сомнений - требуйте у продавца документы, подтверждающие качество товара. Радиоактивность - один из показателей, который обязательно проверяется у пищевых продуктов.

Радиоактивный стронций-90

Источники загрязнения окружающей среды. Наиболее значимый источник загрязнения внешней среды стронцием-90 — испытания ядерного оружия, причем отмечается отчетливо выраженная локальность выпадений (плотность выпадений зависит от физико-географических и климатических особенностей определенных районов). Поступает во внешнюю среду этот радионуклид также с АЭС и заводов по переработке отработанного ядерного топлива (находится в выбросах в легкорастворимой форме). В условиях нормальной эксплуатации АЭС выбросы радиоактивного стронция незначительны.

Радиоизотопы стронция характеризуются большим выходом в реакциях деления урана и плутония и высокой подвижностью в экологических цепях природной среды. Все это должно быть учтено в конструкции атомных реакторов, при определении продолжительности их эксплуатации и системы обращения с радиоактивными отходами.

Пищевые пути (цепи). Основные пищевые цепи миграции радиоактивного стронция: атмосфера — растения — человек; атмосфера — почва — растения — человек; атмосфера — почва — растения — животные — человек; атмосфера — водоемы — питьевая вода — человек; атмосфера — водоемы — гидробионты — рыба — человек;

сточные воды — почва — растения — человек; сточные воды — почва — растения — животные — человек; сточные воды — гидробионты — рыба — человек.

Стронций накапливается в зеленых растениях, в частности в злаковых (зерно), ис хлебопродуктами поступает в организм человека. Через сено (корм) он попадает в ткани животных (коров). Поэтому молоко — второй после хлеба путь поступления стронция в организм человека. Наконец, радиоактивный стронций, выпавший на поверхность водоемов или смытый туда поверхностными стоками, легко поглощается одноклеточными водорослями (фитопланктон), по пищевой цепи накапливается рачками и другими мелкими животными (зоопланктон), а затем рыбой.

Концентрация стронция по мере продвижения по пищевой цепи возрастает, в теле некоторых рыб она может быть в десятки тысяч раз выше, чем в воде. Таким образом, рыба, в особенности ее скелет,— другой распространенный пищевой канат поступления стронция в организм человека. Наконец, важным источником радиоактивного стронция являются овощи и плоды.

Стронций по своим качествам, как уже говорилось, весьма близок к кальцию и циркулирует в биосфере вместе с ним. Атмосферный воздух является первичным резервуаром, откуда стронций поступает в водоемы и на сушу. Осаждение радионуклидов из воздуха определяется гравитацией, оседанием на инертной пыли, постоянно присутствующей в атмосфере, и удалением атмосферными осадками (дождем, снегом). Время пребывания частиц радиоактивного стронция в атмосфере составляет 30—40 сут, а в стратосфере — несколько лет.

Почва имеет особое значение как депо радиоактивного стронция (почти весь он находится в подвижной форме). Вначале он скапливается на ее поверхности, а затем медленно перераспределяется по ее профилю. Стронций усваивается твердой фазой почвы значительно слабее, чем радиоактивный цезий. На миграцию радиоактивного стронция в почве влияют: климатические условия, рельеф местности, гидрологический режим, характер растительности, агротехнические мероприятия и вид почвы. Почвы по степени возрастания поглотительной способности радиоактивного стронция, в свою очередь, можно расположить в следующий ряд: чернозем — каштановые — дерново-подзолистые.

В растения радиоактивный стронций может поступать вследствие непосредственного загрязнения наземной их части (в момент выпадения радионуклида и вторичного пылеобразования), поглощения из почвы через корневую систему и орошения водами, его содержащими. Степень задерживания радионуклида на растительном покрове обусловлена особенностями растений, размерами радиоактивных частиц и метеорологическими условиями. Осевший на поверхность растений стронций-90 может ею всасываться. Коэффициент задержки радионуклидов глобальных выпадений дикой и сельскохозяйственной растительностью равен примерно 25 % . Время удаления (дождем, ветром и др.) с травянистых растений 50 % задержанных радионуклидов для зон умеренного климата составляет 1—5 нед. Накопление радиоактивного стронция обратно пропорционально количеству обменного кальция в почве, кроме того, оно зависит от вида и сорта растений. Так, больше всего его накапливается в бобовых, при этом в семенах, плодах и клубнях значительно меньше, чем в листьях и стеблях.

Радиоактивный стронций в основном поступает в организм животных с кормами. Переход радионуклида в продукты животного происхождения зависит от его биологической доступности, видовых и возрастных особенностей животных и их физиологического состояния. У телят, ягнят, козлят и поросят всасывание стронция в несколько раз больше, чем у взрослых животных. Основная часть радиоактивного стронция накапливается в костях, преимущественно в эпифазах (суставах). Таким образом, наибольшее накопление стронция возможно в растущем организме, причем этот радионуклид, осевший в костях, крайне трудно удаляется из организма. По степени его накопления в скелете сельскохозяйственных животных их можно расположить в следующий ряд: крупный рогатый скот — козы — овцы — свиньи — куры. Наибольшее накопление радионуклида отмечается в паренхиматозных органах — печени, почках, легких, минимальное — в мышцах, а особенно — в сапе. По степени отложения радиоактивного стронция в мышцах и паренхиматозных органах сельскохозяйственных животных их также можно составить в ряд: крупный рогатый скот — овцы — куры. У взрослых животных стронций в мягких тканях накапливается в большем количестве, чем у молодых, но у молодых животных он выводится значительно быстрее, чем у взрослых. Увеличение в рационе питания животных кальция ускоряет выведение стронция-90. У лактирующих животных радионуклид в значительных количествах выводится с молоком.

До 96 % радиоактивного стронция содержится в скорлупе яиц, 3,5 — в желтке и 0,5 % — в белке.

Водоемы представляют особую опасность, поскольку в них радиоактивный стронций накапливается. Гидробионтами, в частности рыбами, он усваивается по пищевой цепи и непосредственно из воды. При этом содержание стронция-90 в гидробионтах зависит не только от его концентрации в воде, но и от степени ее минерализации: с ее уменьшением накопление радионуклидов в гидробионтах повышается.

В итоге можно сделать вывод о том, что основным источником поступления радиоактивного стронция в организм человека являются продукты растительного и животного происхождения. Растворимые формы стронция хорошо всасываются в желудочно-кишечном тракте. Особую опасность радионуклид представляет для детей, в организм которых он поступает с молоком и накапливается в больших количествах в костях. С возрастом усвояемость радиоактивного стронция снижается. Высокое содержание в рационе питания кальция препятствует всасыванию радиоактивного стронция, который относится к наиболее опасным высокотоксичным радионуклидам. Большие его дозы вызывают у человека острую лучевую болезнь, длительное воздействие небольших доз приводит к развитию хронической ее формы. Для последней характерно поражение в отдаленные сроки кроветворной системы, развитие болезней крови (лейкозы) и костных опухолей.

Радиоактивный цезий-137

Среди техногенных радионуклидов особую опасность представляют радиоактивные изотопы цезия, особенно долгоживущий цезий-137 с периодом полураспада 30±0,2 года. Для этого радионуклида характерна высокая подвижность в экологических цепях природной среды и способность накапливаться в ее отдельных звеньях.

Источники загрязнения окружающей среды. Основным источником образования цезия-137 являются испытания ядерного оружия и предприятия ядерной энергетики. В больших количествах радионуклид накапливается в ядерных реакторах в процессе их эксплуатации. В условиях нормальной эксплуатации АЭС радиоактивные выбросы незначительны и зависят от конструкции ядерного реактора, типа систем очистки от радиоактивных веществ и выбрасываемого из станции воздуха, времени эксплуатации реактора и др. Загрязнителями окружающей среды цезием-137 могут также быть заводы по переработке отработавших твэлов. Потенциальные источники поступления цезия-137 в природную среду — сбросы из АЭС радиоактивных веществ в открытые пресноводные водоемы и хранилища радиоактивных отходов. Дозы облучения населения за счет выбросов предприятий топливно-ядерного цикла в условиях их нормальной эксплуатации незначительны и ниже рекомендованных нормативов.

Большая опасность загрязнения окружающей среды радиоактивным цезием возникает при авариях АЭС, когда значительно увеличиваются его выбросы. Дозы облучения при этом резко возрастают и колеблются в зависимости от масштабов аварии и эффективности мероприятий по ее ликвидации. Поступление цезия-137 в большой степени определяет радиационную опасность на протяжении длительного времени. Уровень загрязнения радиоактивным цезием окружающей среды зависит также от физико-географических и климатических особенностей районов, распределения атмосферных осадков и др. Например, в отдельных районах (украинско-белорусское Полесье, субарктические районы) уровни поступления цезия-137 с продуктами животного и растительного происхождения более высокие, чем в других. На Севере этому способствуют особенности роста лишайников (основной корм оленей), благоприятствующие задержке этого радионуклида и аккумуляции его в течение длительного времени.

Пищевые пути (цепи). Как и радиоактивный стронций, цезий-137 отличает высокая подвижность во внешней среде, особенно в первое время после его выпадения, а также по пищевым цепям, которые аналогичны миграции стронция-90. Еще одна возможная пищевая цепь миграции радионуклидов: источник загрязнения — лекарственные растения — лекарственное растительное сырье — лекарственный препарат — человек. Следует признать, что данная пищевая цепь миграции радионуклидов пока еще изучена недостаточно. В этом отношении представляют интерес данные исследования дикорастущего лекарственного растительного сырья в южных районах Калужской области, подвергнувшихся радиоактивному загрязнению. В результате оказалось, что плоды древесных пород на открытых местах обитания фактически не накапливают цезий-137. Наиболее низкие значения загрязнения почв для заготовки произрастающих на них лекарственных растений с безопасным содержанием цезия-137 выделены для многолетних кустарников и полукустарников, выросших на лугах (тимьян ползучий) и в лесу (брусника обыкновенная, багульник болотный).

Выпавший на поверхность почвы радиоактивный цезий мигрирует в горизонтальном и вертикальном направлениях, при этом важное значение приобретает его растворимость. В почве цезий-137 легко переходит в трудноусвояемую форму, образуя плохорастворимые соли. Поэтому его поступление в растения через корни происходит с трудом. Выпадение кислотных дождей облегчает переход цезия-137 в растворимую форму. На миграцию радионуклида в почве существенное влияние оказывают рельеф местности, гидрологический режим, вид почвы, характер растительности, проводимые агротехнические мероприятия и прочность связи радионуклида с почвой. По степени увеличения поглотительной способности цезия почвы можно расположить в ряд: черноземы — каштановые — дерново-подзолистые.

В растения радиоактивный цезий может поступать в результате непосредственного загрязнения листьев, стеблей, соцветий и плодов, а также усваиваться из почвы через корневую систему. Уровни поверхностного загрязнения растений зависят от их морфологических особенностей, плотности выпадений осадков, физико-химических свойств аэрозолей. По степени концентрирования цезия-137 растения могут быть расположены в следующий ряд: капуста — свекла — картофель — пшеница— естественное разнотравье. Уменьшение загрязненности пастбищной растительности (за счет дождя, ветра, прироста биомассы) происходит за период, равный примерно 14 сут. Более 90 % осевшего радионуклида удаляется в первые 2 мес. Растворимый цезий-137 поглощается корнями растений из почвенного раствора и прочно закрепляется в почве. По степени возрастания перехода цезия-137 в растения можно выстроить следующий ряд почв: дерново-подзолистые — красноземы — лу-гово-карбонатные — черноземы — сероземы. Больший переход радиоактивного цезия наблюдается в регионах с торфянисто-болотными почвами (украинско-белорусское Полесье). По степени накопления этого радионуклида в клубнях и зернах растения можно расположить в ряд: ячмень — просо — пшеница — гречиха — фасоль — овес —-чумиза — картофель — бобы. Величина накопления цезия-137 в растениях зависит от их вида, типа почвы и характера агротехнических мероприятий. При этом концентрация радиоактивного цезия в генеративных и вегетативных органах растений примерно одинакова.

Источниками цезия-137 для человека могут быть растительные (хлеб, овощи, фрукты) и животные (мясо, рыба, молоко и т. п.) продукты. Поскольку этот радионуклид имеет некоторые общие свойства с калием, то ткани растительного и животного происхождения накапливают и калий, и радиоактивный цезий. В организм животных цезий-137 в основном поступает с кормом, а выводится радионуклид преимущественно через почки. Основное количество его накапливается в мышцах (свыше 80 %), на втором месте находится скелет (около 10 %). Содержание радионуклида в 1 кг мышц коров, овец, коз, свиней и кур составляет соответственно 4, 8, 20, 26 и 45 % от суточного поступления. Радиоактивный цезий в значительных количествах выводится с молоком у лактирующих животных. При длительном поступлении радионуклида коровам содержание его в молоке достигает 0,8 — 1,2 % в 1 л от ежесуточного поступления, у коз — 10 — 20 %, у овец — 5 — 15 %. Эти различия связаны с физиологическими особенностями животных, характером корма и условиями их содержания.

Куриные яйца также являются источником поступления цезия-37 в организм человека, причем в белке радиоактивного цезия содержится в 2—3 раза больше, чем в желтке, а в скорлупе — 1—2 % от общего количества радионуклида в яйце.

Радиоактивный цезий в больших количествах накапливается в гидробионтах. Рыба усваивает цезий-137 непосредственно из воды и главным образом с кормом. Степень накопления этого радионуклида обусловлена биологическими и физиологическими особенностями каждого вида рыб. Слабая минерализация воды способствует более высокому накоплению цезия-137. В рыбе пресноводных водоемов радиоактивного цезия содержится в десятки — сотни раз больше, чем в морской. В то же время в промысловой рыбе Атлантического океана — в 10—30 раз ниже, чем в рыбе внутренних морей (например, Каспийского). Водные растения в зависимости от накопления цезия-137 могут быть расположены в следующий ряд: водоросли — растения, погруженные в воду,— прибрежно-водные растения — растения, плавающие на поверхности.

Радиоактивный цезий обладает достаточно высокой радиотоксичностью. В организм человека он может поступать через органы дыхания, кожные покровы, раны и ожоговые поверхности. Однако главный путь — с пищей. Радиоактивный цезий, подобно калию, равномерно распределяется в тканях и органах человека (что приводит к относительно равномерному их облучению), однако большая его часть концентрируется в мышечной ткани (80 % и лишь 10 % в костях). Цезий-137 относительно легко удаляется из организма. Выводится он преимущественно с мочой и частично — с калом. Период полувыведения этого радионуклида из организма — 65—100 сут. Скорость его выведения из организма обусловлена индивидуальными различиями людей в скорости обмена веществ и зависит от возраста, пола, характера питания, а также от многочисленных факторов внешней среды. Следует иметь в виду, что цезий-137 в значительных количествах переходит из организма матери через плаценту в плод (а в период вскармливания — с молоком к новорожденным).


История открытия цезия 137

Цезий имеет интересную историю открытия. В 1860г. в лабораторию немецкого ученого Бунзепа врачи прислали воду со шварцвальских источников. Испаривши воду, ученый внес раствор в пламя газовой горелки и стал рассматривать в спектроскоп. Обнаружил, что в пламени появилось новое вещество цвета небесной голубизны. Оно было названо цезием, что в переводе с латинского обозначает «небесно голубой» цезий – один из очень редких элементов, который находится в горных породах, морской воде, небольшая часть его находится в сахарной свекле, зернах какао, чайных листах. Знаком с ним и курильщик: об этом свидетельствует 2 голубые линии в спектре табачного дыма.

Цезий давно изучается учеными. Ученые с индийского института геофизических исследований пришли к выводу, что высокая концентрация в воде может быть приметой магматической активности недров.

Повышенная концентрация радиоактивного изотопа Cs-137 обнаружено в деревьях, которые сохранились в районах Тунгунского взрыва, причем изменения характерные для тех слоев ствола, которые относятся к 1908 г., когда это произошло.

Общая характеристика цезия 137

Изотоп Cs-137 является фактически единственным источником гамма-излучения, применяющимся в агрономических исследованиях для определения плотности и влажности почв, несмотря на то, что имеются и другие источники гамма-излучения. Удобство этого источника усиливается еще и тем, что он имеет 30-летний период полураспада, вследствие чего отпадает необходимость в ежедневной корректировке радиоактивного распада. Относительно низка также стоимость этого изотопа. Радиоактивные изотопы цезия, являющиеся химическими аналогами калия, отличаются высокой биологической подвижностью. При наличии в почвах они интенсивно поступают в растение. Размеры перехода радионуклидов из почвы в растения часто определяют величиной коэффициента накопления (КН) растениями.

Коэффициент накопления представляет собой отношение содержания радионуклида в единице растительной массы (Ср) к содержанию радионуклида в единице массы почвы (Сп):

В таблицу 1 занесены коэффициенты о накоплении радионуклидов в соломе на различных видах почвы.

Таблица 1- Коэффициент накопления радионуклидов в соломе

Так, при поступлении из почвы в растения коэффициент накопления Cs-137 может достигать 2.

Исходя из пяти основных рационов КРС, полученных из кормов, выращенных на основных четырех типах почв (дерново-подзолистые песчаные, супесчаные, суглинистые, и торфяно-болотные) проведены расчеты предельно-допустимого уровня (ПДУ) загрязнения сельскохозяйственных угодий радионуклидами Cs-137 в зависимости от содержания обменного калия в почве (80-500 мг/кг).

ПДУ Cs-137, где в почве содержалось 80 и менее мг/кг калия для дерново-подзолистых песчаных и супесчаных почв составили 0,37-1,09 МБк/м 2 , суглинистых 0,51-1,53 МБк/м 2 ,торфяно-болотистых (калий 250 мг/кг и менее) 0,09-0,14 МБк/м 2 .

Цезий – химический элемент 1 группы периодической системы Д.И.Менделеева. Щелочной металл. Атомная масса 132,91. В природе существует один стабильный изотоп Cs-133. Встречается главным образом в рассеянном состоянии в минералах лепирлите и карполлите. Образует и самостоятельные минералы поллуцит и родицит.

Цезий серебристо-белый металл, мягкий, тягучий. Во всех соединениях одновалентен. Плотность 1,903 г/см 3 (при 20º С), температура плавления

28,5ºС, температура кипения 670ºС. Обладает селективным фотоэлектрическим эффектом. На воздухе моментально воспламеняется с образованием перекиси Сs 2 Оз. Воспламеняется при взаимодействии с галогенами. С серой и фосфором взаимодействует со взрывом, так же протекает взаимодействие его с кислотой и водой. При 300ºС разрушает стекло и кварц, вытесняя кремний. Простые соли цезия (хлориды, сульфаты и др.), хорошо растворимы в воде, двойные и комплексные – плохо. Цезий извлекается из природных минералов вместе с рубидием. В разных почвах действие цезия различно: в глинистых, выщелоченных, обедненных калием он закрепляется прочно, плохо поступает из них в корни растений, в почвах, богатых органикой, хорошо усваивается корневой системой растений (частично этому способствует большая обменная катионная емкость органических почв). Цезий легко передвигается в самих растениях. Накапливается в лишайниках (иногда в 10 раз больше, чем в растениях юга), осоке, хвощах.

Среднее содержание его в растениях примерно 0,022% сухого вещества. В значительных количествах он накапливается в организме беспозвоночных животных – 0,0138% (на сухое вещество), в организме позвоночных его в 4 раза меньше. Цезий поступает в организм животных преимущественно с растительной пищей, легко всасывается в желудочно-кишечном тракте (50-80%) и свободно циркулирует по всему телу. Основная часть его депонируется в мышцах (80%) и костях (около 8%). Причем более активные мышцы поглощают цезий в больших количествах. У лактирующих животных значительная доля цезия переходит в молоко, у кур - в яйца. Выводится из организма с мочой и калом. Жвачные выводят цезий в больших количествах, чем другие животные.

Из пищевых продуктов цезием богаты хлеб, картофель, различная зелень. При парентеральном введении в организм выведение его с мочой и калом значительно увеличивается при обогащении рациона калием, и наоборот, снижение содержания калия в рационе приводит к снижению выведения цезия. О токсическом действии цезия в условиях его непрерывного поступления в организм с рационом данных нет. У разных видов животных уровни накопления различные. Например, в тканях коровы цезия значительно больше, чем в тканях овцы, поскольку масса мягких тканей у коровы примерно в 7 раз больше.

Радиоактивный изотоп Cs-137бета - излучатель. Распадается с испусканием двухкомпонентного бета-спектра. Ев = 511,7 кэВ (94,8%), Ев = 1173,4 кэВ (5,2%). Максимальная энергия 0,52 Мэв, средняя 179 кэВ. Этому изучению сопутствует гамма-излучение, испускаемое дочерним радиоактивным барием, с энергией 661,662 кэВ и рентгеновские лучи с энергией 32-36,5 кэВ. Поскольку цезий при попадании в организм циркулирует по всему телу, дозы облучения всех органов примерно одинаковы, и поэтому возможны генетические и соматические повреждения. Влияние Cs-137 на продолжительность жизни и другие эффекты одинаково при разных путях поступления в организм. При попадании на кожу Cs-137 всасывается по кровеносным сосудам и лимфатическим капиллярам, период полувыведения его из кожи равен одним суткам. Период полувыведения Cs-137 из организма различен у разных видов животных, например, у собак он равен 42 суткам, а у крыс 6. При инкорпорации Cs-137 в организм возможно развитие лейкемии, рака молочной железы и печени, подавление лимфоидного кроветворения, угнетение функции костного мозга, опухоли кожи.

Допустимые уровни активности Cs-137 в открытых водоемах 1,5 10-8 Ки/л (555 Бк/л), воздуха рабочей зоны – 1,4 10 –11 Ки/л (0,52 Бк/л), в атмосферном воздухе – 4,9 10-13 Ки/л (0,02 Бк/л).



Цезий-137 является одним из наиболее долгоживущих продуктов деления урана и представляет собой смешанный бета-, у-излучатель с периодом полураспада, равным 30 г. Максимальная энергия основной массы электронов (92%) составляет 1,17 МэВ, а у-излучения -0,66 МэВ.

Выпадая в виде радиоактивных осадков от взрывов атомных бомб или выбросов атомных установок, 137Cs мигрирует по различным биологическим цепочкам, замыкающимся на человеке. Кроме того, имеется опасность инкорпорирования 137Cs у отдельных fpynn людей, контактирующих с данным излучателем в производственных или лабораторных условиях.

В литературе имеются уже сообщения о несмертельных поражениях человека 137Cs [Фатеева М. Н. и др., 1960; Кириллов С. А., Виссонов Ю. В., 1971; Djuric D. et a!., 1964]. Эффективность биологического действия 137Cs в организме не зависит от пути поступления и вида животных. При попадании в организм парентерально изотоп быстро проникает в кровь, а оттуда через лимфатическую систему равномерно распределяется по внутренним органам и мягким тканям.

Однако при поступлении в организм через легкие и желудочно-кишечный тракт в лимфатической системе излучатель не обнаруживается, хотя из обоих органов всасывается 85-100% поступившего изотопа [Москалев Ю. И., 1961; Булдаков Л. А., Москалев Ю. И., 1968; Буров Н. И., 1977].

Распределение 137Cs по организму при любом пути инкорпорирования такое же, как при введении непосредственно в кровь. l37Cs свободно проходит через гистогематические барьеры и в значительном количестве проникает в головной мозг, а у беременных особей - и в плод через плаценту. Основное количество инкорпорированного 137Cs задерживается в сердечной мышце (52-75%) и в скелете.

Причем в отличие от внутренних органов концентрация излучателя в мышечной тканн повышается в течение длительного времени после поступления в организм.и только через 4-5 сут начинает постепенно снижаться.

В сердечной мышце первоначальная концентрация изотопа в 7-10 раз выше, чем в скелетных мышцах, а максимальное содержание соответственно в 5 раз, что, по-видимому, связано с различной интенсивностью кровоснабжения миокарда во время сократительной деятельности. В скелетных мышцах концентрация 137Cs в 2 раза выше, чем в костях [Буров Н. И., 1977]. Концентрация 137Cs в мышцах, печени и костях у человека в 10-30 раз выше, чем у лабораторных животных.

137Cs полностью всасывается из мест первичной локализации при любом пути поступления в организм и выделяется преимущественно через почки [Москалев Ю. И., 1961; Борисова В. В. и др., 1966: Richmond С. et ai., 1962]. Биологический период полувыведения из организма человека в целом равен 70 сут, из мышц, легких, скелета-140 сут, из почек, печени, селезенки - 42, 90, 98 сут соответственно. Основная доля 1?"7Cs, поступившего в кровь, связана с эритроцитами. В плазме находится лишь 10-25% содержащегося в крови изотопа [Кругликов Б. П., 1977].